



27th  
**ECCMID**

Vienna, Austria  
22 – 25 April 2017

## REPORTING ANTIBIOTIC DATA

### Reporting MICs or Clinical Categories?



UNIVERSIDAD DE CÓRDOBA



INSTITUTO  
MEXICANO  
DE INVESTIGACIONES  
BIOMÉDICAS  
CINVESTAV

Luis Martínez-Martínez  
Dept. Microbiology  
University of Córdoba  
Service of Microbiology  
Univ. Hosp. Reina Sofía  
Córdoba, Spain



Vienna, April 22 2017

# REPORTING MICs - - - CLINICAL CATEGORIES INDICATIONS

**Microorganisms [likely] causing an infection**

Bacteria cultured from colonized patients

Identification of microorganisms to genus/species level

Definition of breakpoints (clinical BP, ECOFF)

Research

# REPORTING SUSCEPTIBILITY TESTING RESULTS

**Methodological issues**

**Conceptual issues**

# REPORTING SUSCEPTIBILITY TESTING RESULTS

**Methodological issues**

# IN VITRO SUSCEPTIBILITY TESTING: METHODOLOGIES

## Phenotypic assays:

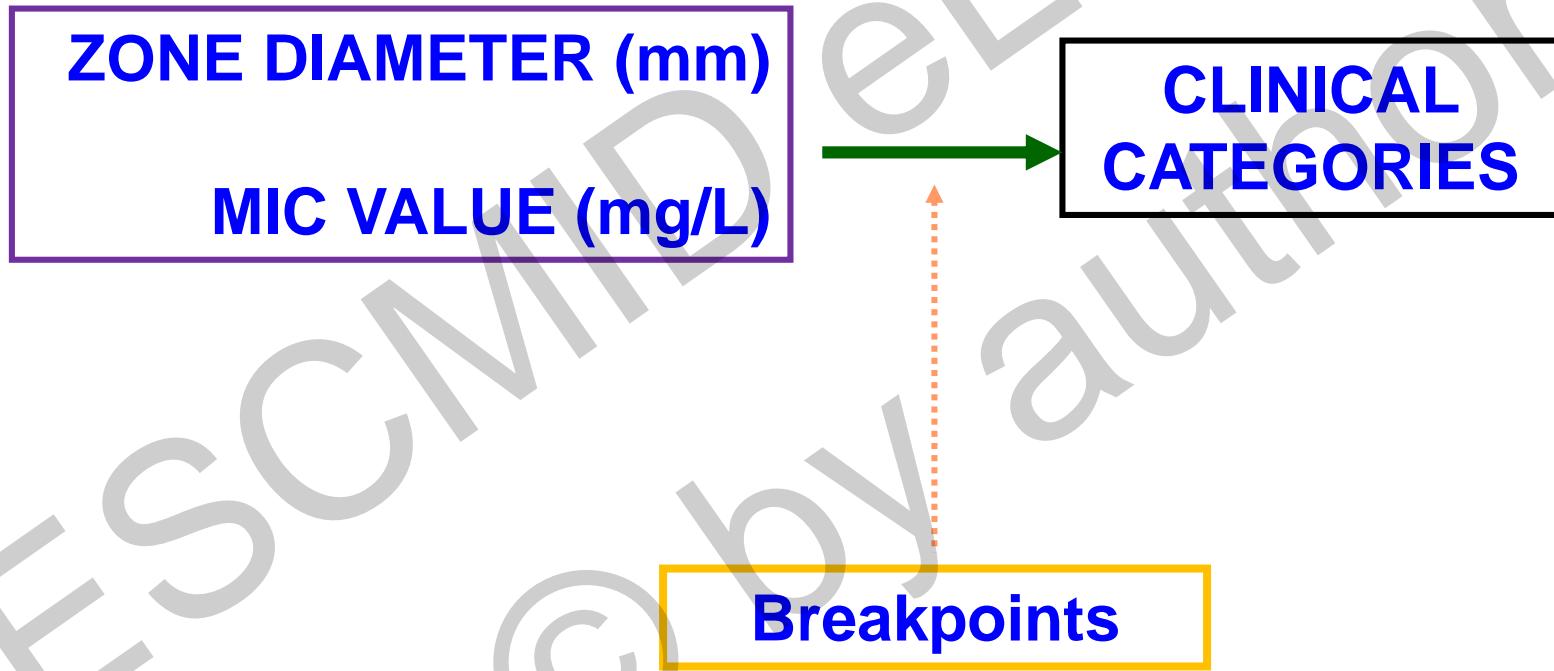
Microorganism-antimicrobial agents interaction

Dilution assays: Broth dilution

Macrodilution

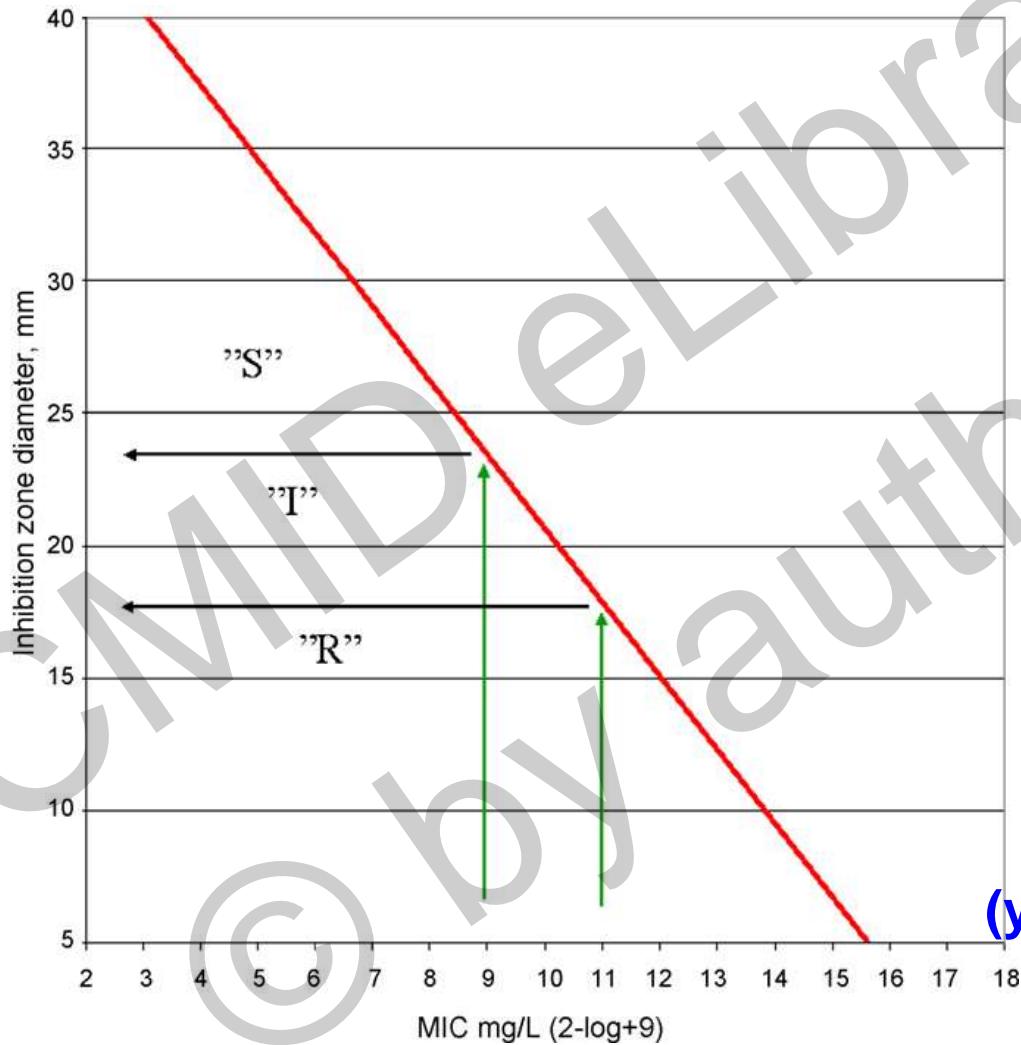
Microdilution

[(semi)-automated dilution devices]


Agar dilution

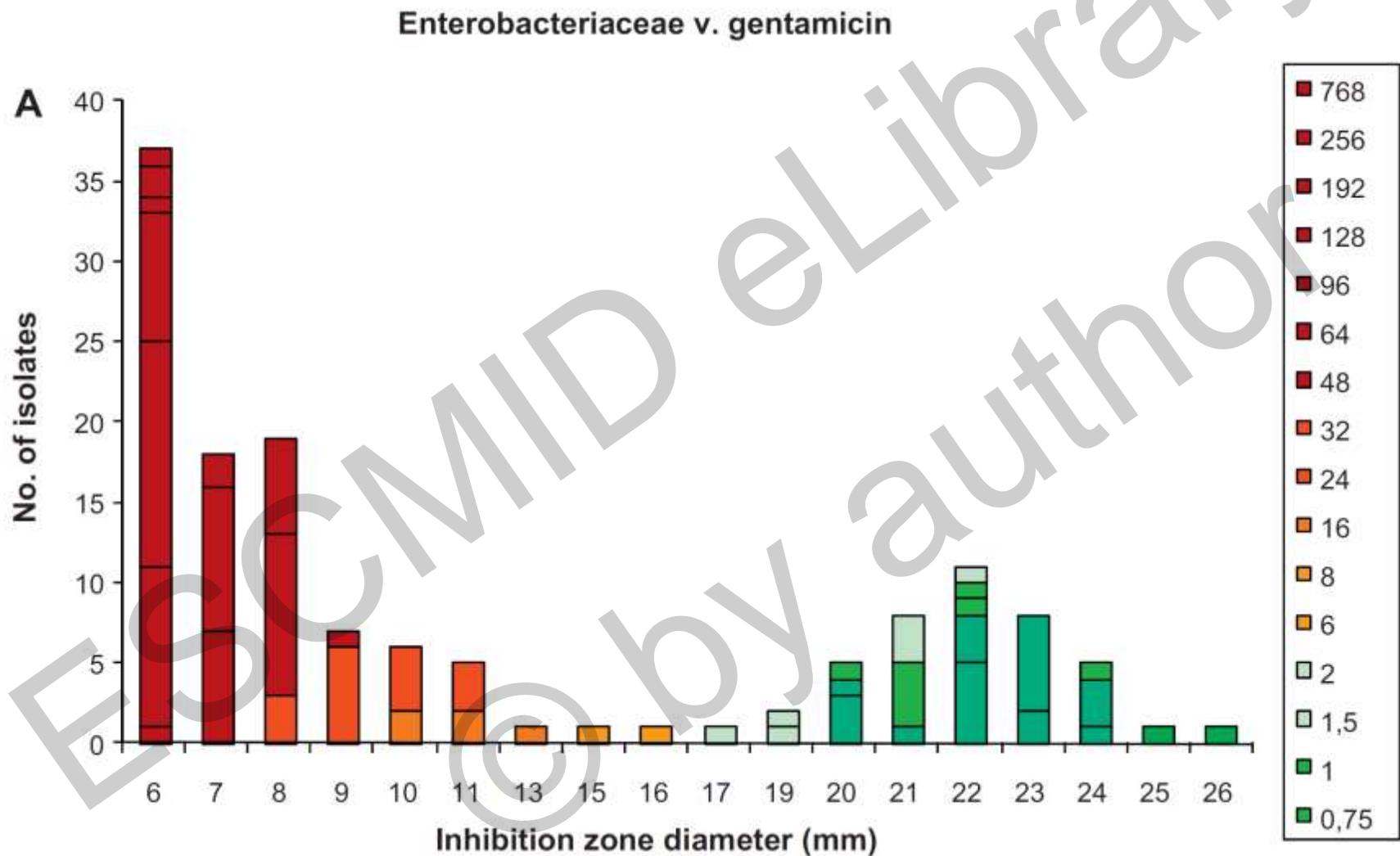
Diffusion assays: Paper discs/Tablets

Gradient strips


## Detection of biochemical mechanisms

## Detection of resistance genes

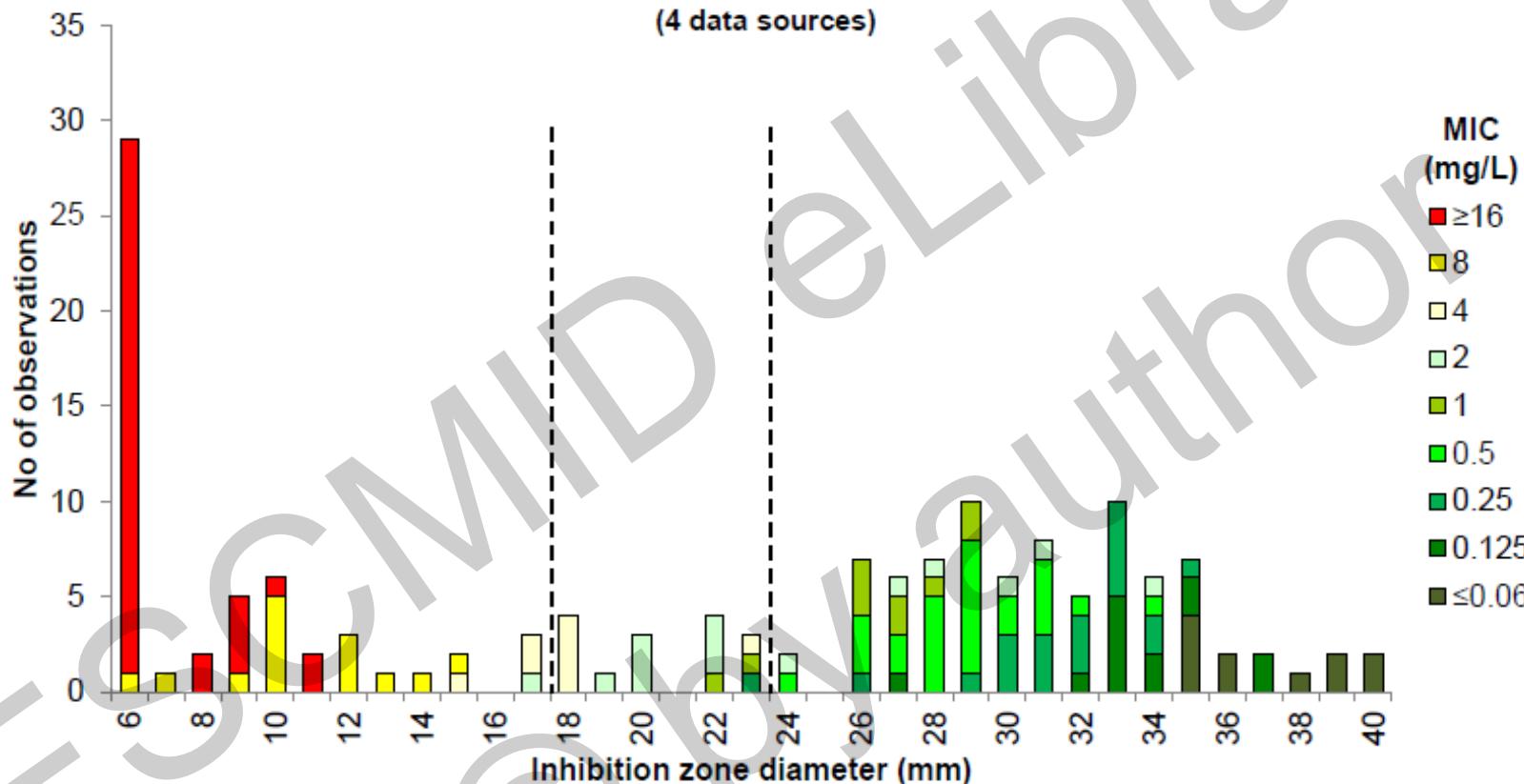



- 1. MICs are the simplest (semiquantitative) estimates of the antibacterial effect in vitro.**  
**MICs are currently the reference values measuring In vitro susceptibility testing.**
- 2. All breakpoints defining clinical categories are either**
  - MICs**
  - Zone diameter values correlated with MICs**

# REGRESSION LINE FOR TETRACYCLINE



$$(y = -2.78x + 48.49)$$


# MIC-COLOURED ZONE DIAMETER HISTOGRAM TECHNIQUE

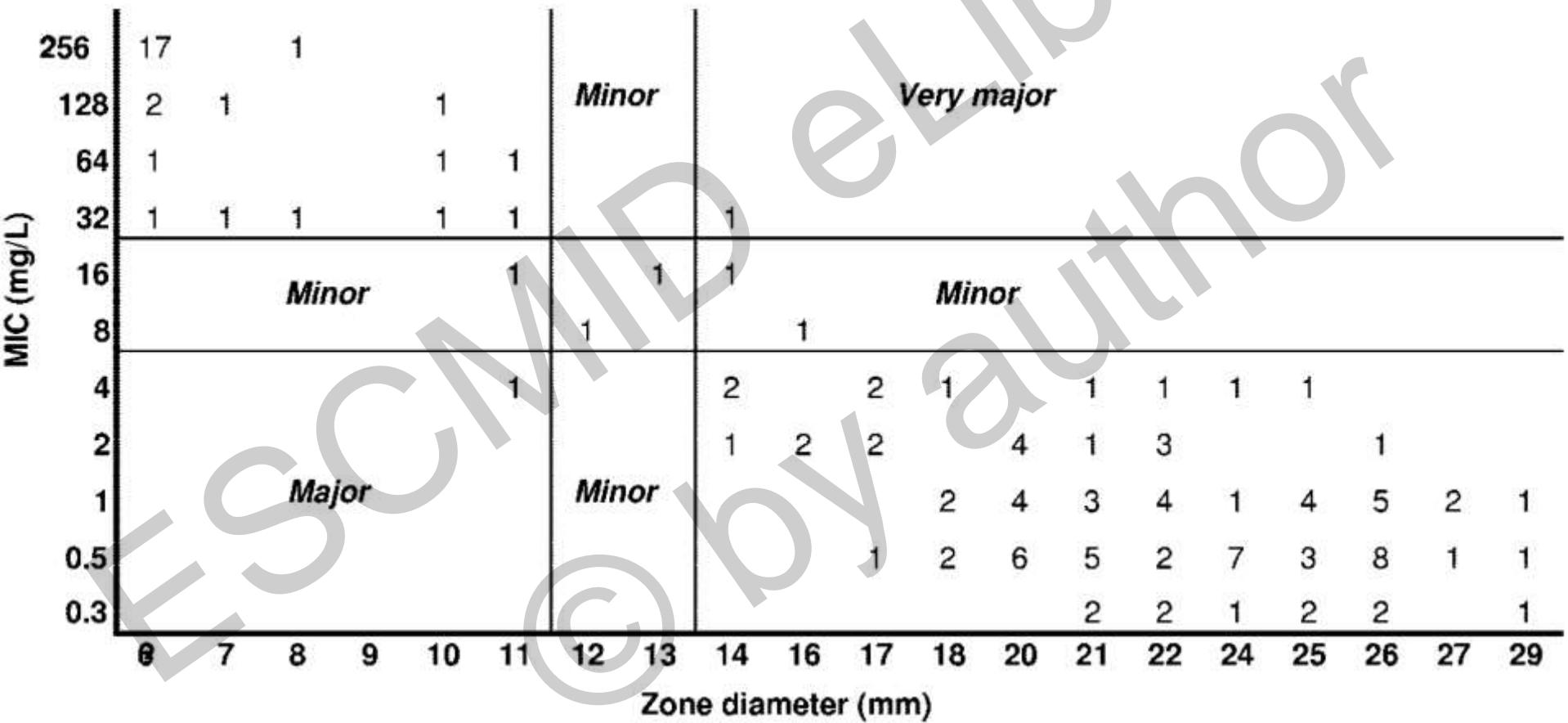


# MIC-COLOURED ZONE DIAMETER HISTOGRAM TECHNIQUE

Meropenem 10  $\mu$ g vs. MIC  
*Pseudomonas aeruginosa*, 153 isolates

(4 data sources)




## Breakpoints

MIC  $S \leq 2, R > 8$  mg/L  
Zone diameter  $S \geq 24, R < 18$  mm

## ECOFF

2 mg/L

# “SCATTERGRAM” OF MICs vs. INHIBITION ZONE DIAMETERS



|                                     | STANDARDIZED | RESULT        | CLINICAL CATEGORIES             |
|-------------------------------------|--------------|---------------|---------------------------------|
| MACRODILUTION                       | YES          | MIC           | YES                             |
| MICRODILUTION                       | YES          | MIC           | YES                             |
| [COMMERCIAL] MICRODILUTION          | [😊]          | [MIC]*        | YES                             |
| AGAR DILUTION                       | YES          | MIC           | YES                             |
| GRADIENT DIFFUSION                  | [😊]          | MIC           | YES                             |
| DISC DIFFUSION                      | YES          | Zone diameter | YES                             |
| DETECTION OF BIOCHEMICAL MECHANISMS | [😊]          | Pos/Neg       | Resistant vs. not Resistant     |
| DETECTION OF RESISTANCE GENES       | [😊]          | Yes/Not       | “Resistant” vs. “Not Resistant” |

\*Unprecise results are obtained for some agents depending on panels/cards composition

27th **ECCMID**

Vienna, Austria

22 – 25 April 2017

The congress of  ESCMID

**Slide withheld at  
request of author**

**For some organisms, only MIC assays are indicated, or clinical breakpoints have only been defined for MIC assays**

# ENTEROBACTERIA: MICs vs DD

## EUCAST 2017

|             | COMMENT                                                                                                       |
|-------------|---------------------------------------------------------------------------------------------------------------|
| Mecillinam  | AGAR DILUTION is the reference method for Mecillinam MIC determination.                                       |
| Fosfomycin  | Zone diameter breakpoints apply to <i>E. coli</i> only. For other Enterobacteriaceae, use an MIC method.      |
| Tigecycline | Zone diameter breakpoints validated for <i>E. coli</i> only. For other Enterobacteriaceae, use an MIC method. |
| Colistin    | Use an MIC method.                                                                                            |

# EVALUATION OF FIVE COMMERCIAL MIC METHODS FOR COLISTIN ANTIMICROBIAL SUSCEPTIBILITY TESTING FOR GRAM-NEGATIVE BACTERIA

**"The correlation between gradient tests and reference MICs was poor, even when QC results were within range. This was probably related to the poor diffusion of colistin in agar.**

**Based on the results of this study, EUCAST recommends laboratories to use BMD methods for colistin MIC determination and advice against the use of gradient tests at this point."**

## *Pseudomonas aeruginosa* EUCAST 2017

|                        | MIC BP<br>(mg/L) |    | Disc<br>Content (μg) | Zone diameter BP<br>(mm) |                |
|------------------------|------------------|----|----------------------|--------------------------|----------------|
|                        | S≤               | R> |                      | S≤                       | R>             |
| Ceftolozane-tazobactam | 4                | 4  | 30                   | In preparation           | In preparation |

**CLSI MIC BREAKPOINT FOR RESISTANCE IS DIFFERENT**

**([IN PRINCIPLE...] CLSI DIFFUSION BREAKPOINS SHOULD NOT BE APPLIED  
IF EUCAST METHODOLOGY AND CRITERIA ARE USED IN THE LAB!!!)**

27th **ECCMID**

Vienna, Austria

22 – 25 April 2017

The congress of  ESCMID

**Slide withheld at  
request of author**

# COMPARATIVE GENERAL DISADVANTAGES OF PHENOTYPIC TESTING ASSAYS

## DILUTION METHODS

1. (USUALLY) BASED ON GEOMETRIC SCALE
2. ACTUAL MIC VALUE SOMEWHERE BETWEEN THE OBTAINED MIC AND THE IMMEDIATE LOWER DILUTION  
  
1+2 : Major impact at high MICs!!!
3. INTRINSIC METHODOLOGICAL ERROR ACCEPTED TO BE  $\pm 1$  DILUTION (or even more, depending on the organism)
4. DIFFICULTIES FOR DETECTING CONTAMINATION IN DILUTION ASSAYS (TECHNICAL MISTAKE vs. EAGLE's EFFECT)
5. STANDARDIZED VERSIONS ARE DIFFICULT TO IMPLEMENT IN DAILY WORK OF CLINICAL LABORATORIES

## GRADIENT DIFFUSION

1. UNRELIABLE RESULTS FOR SOME AGENTS [...NOT A STANDARDIZED METHOD!!!]

## DISC DIFFUSION

1. [MIC] and MBC NOT DEFINED
2. NOT A STANDARDIZED METHOD FOR SOME AGENTS/BACTERIA

# REPORTING SUSCEPTIBILITY TESTING RESULTS

**Conceptual issues**

# INTERPRETATIVE CLINICAL CATEGORIES

| <b>EUCAST</b>       | <b>CLSI</b>                       |
|---------------------|-----------------------------------|
| <b>SUSCEPTIBLE</b>  | <b>SUSCEPTIBLE</b>                |
|                     | <b>SUSCEPTIBLE-DOSE DEPENDENT</b> |
| <b>INTERMEDIATE</b> | <b>INTERMEDIATE</b>               |
| <b>RESISTANT</b>    | <b>RESISTANT</b>                  |
|                     | <b>NONSUSCEPTIBLE</b>             |

## **EUCAST: CLINICALLY SUSCEPTIBLE (S)**

**A microorganism is defined as susceptible by a level of antimicrobial activity associated with a high likelihood of therapeutic success. The microorganism is categorized as susceptible by applying the appropriate breakpoint in a defined phenotypic test system.**

## **CLSI: SUSCEPTIBLE (S)**

**Isolates with an MIC at or below or zone diameters at or above the “susceptible breakpoint” are inhibited by usually achievable concentrations of antimicrobial agent when the dose recommended to treat the site of infection is used, resulting in likely clinical efficacy.**

## **EUCAST: CLINICALLY RESISTANT (R)**

**A micro-organism is defined as resistant by a level of antimicrobial activity associated with a high likelihood of therapeutic failure.**

**A micro-organism is categorized as resistant by applying the appropriate breakpoint in a defined phenotypic test system**

## **CLSI: RESISTANT (R)**

**Isolates with an MIC at or above or zone diameters at or below the “resistant breakpoint” are not inhibited by usually achievable concentrations of the agent with normal dosage schedules AND/OR that demonstrate MICs that fall in the range in which specific microbial resistance mechanisms are likely, and clinical efficacy of the agent against the isolate has not been reliably shown in treatment studies.**

## CLINICALLY INTERMEDIATE (I) [TRADITIONAL]

- A microorganism is defined as intermediate by a level of antimicrobial agent activity associated with uncertain therapeutic effect. It implies that an infection due to the isolate may be appropriately treated in body sites where the drugs are physically concentrated or when a high dosage of drug can be used.
- It also indicates a buffer zone that should prevent small, uncontrolled, technical factors from causing major discrepancies in interpretations.  
[Impact on Major and Very Major errors in categorization!!!].

## INTERMEDIATE (I)

- Isolates with MICs or zone diameters within the intermediate range, that approach usually attainable blood and tissue levels and for which response rates may be lower than for susceptible isolates. It implies clinical efficacy in body sites where the considered drug is physiologically concentrated or when a higher than normal dosage of a drug can be used.
- It includes a buffer zone, which should prevent small, uncontrolled technical factors from causing major discrepancies in interpretation, especially for drugs with narrow pharmacotoxicity margins.

# EUCAST

## Proposed new definition

### INTERMEDIATE (I) (2016)

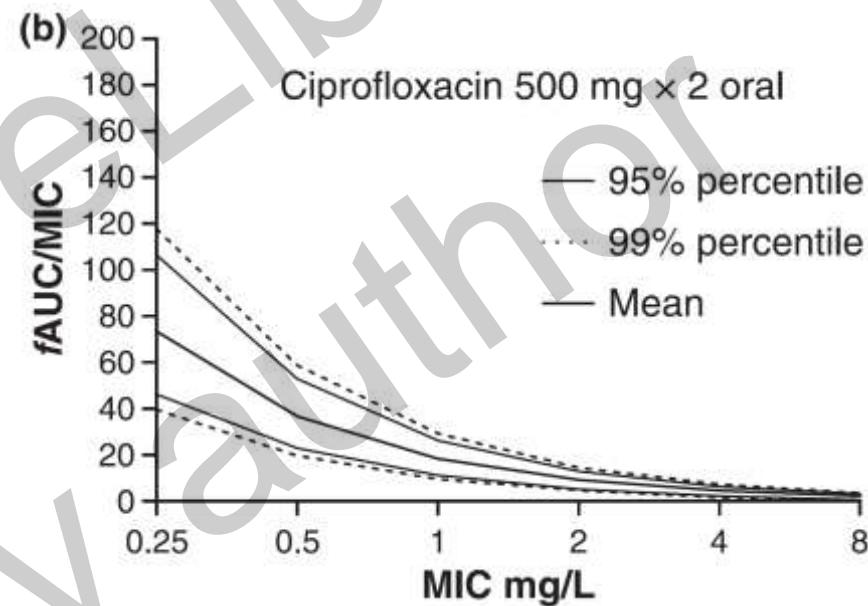
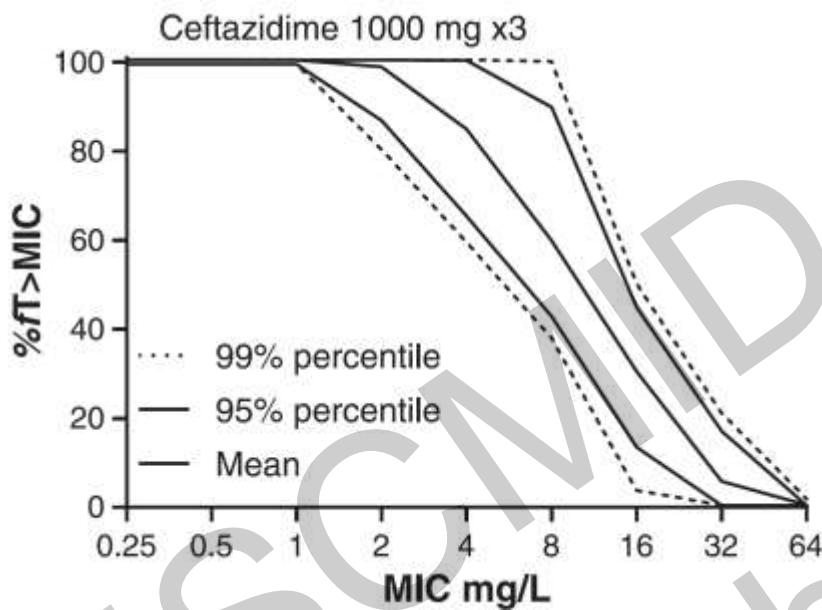
A microorganism is defined as intermediate by a level of antimicrobial activity associated with a high likelihood of therapeutic success but only when a higher dosage of the agent than normal can be used or when the agent is physiologically concentrated at the site of infection.

(2017) A microorganism is categorized as intermediate when there is a high likelihood of therapeutic success because exposure (activity) is enhanced (1) by adjusting the dosing regimen, or (2) because the antimicrobial agent is concentrated at the site of infection.

# SHOULD LABORATORIES THAT PERFORM MIC TESTS REPORT ACTUAL MIC VALUES OR RATHER PROVIDE ONLY CATEGORY INTERPRETATIONS?

...Consensus view is that in all but selected situations, only the category interpretation should be reported routinely.

This view is predicated on the relatively obscure relationship that exists between individual MIC values and defined predictions of therapeutic response together with the inherent variability of MIC determinations.



# CLSI 2017

**MIC values may be reported directly to clinicians for patient care purposes, AND an interpretative category results should also routinely be provided**

**When disk diffusion is used, zone diameters without an interpretative category should not be reported**

**It is not appropriate to apply disk diffusion or MIC breakpoints borrowed from a (breakpoint) table where the organism is not listed.**

# MIC IS CRITICAL FOR PD STUDIES



Mouton JW et al. CMI, 2012:37

(...A SIMILAR APPROACH WITH JUST CLINICAL CATEGORIES HAS NOT BEEN DEVELOPED)

**Does resistance [always] predict failure and  
susceptibility predict success of antimicrobial therapy?**

# “90-60” RULE

| Type(s) of infection                    | Drug(s) administered        | Outcome measurement    | Measurement used to determine susceptibility | Cases with successful outcome, % (no. of cases/total no. of cases), by susceptibility class |                  |       |
|-----------------------------------------|-----------------------------|------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------|------------------|-------|
|                                         |                             |                        |                                              | Susceptible <sup>a</sup>                                                                    | Resistant        | P     |
| Bacteremia and fungemia                 | Various                     | Mortality              | MIC <sup>b</sup>                             | 73 (224/309)                                                                                | 48 (10/21)       | .02   |
| Bacteremia and fungemia                 | Various                     | Mortality              | MIC <sup>b</sup>                             | 89 (594/665)                                                                                | 77 (97/126)      | <.001 |
| Serious bacterial infections            | Various                     | Clinical response      | MIC                                          | 81 (219/271)                                                                                | 4 (1/27)         | <.001 |
| Pneumococcal otitis media               | Amoxicillin/clavulanic acid | Clinical response      | MIC                                          | 80 (149/186)                                                                                | 68 (15/23)       | .26   |
| Pneumococcal otitis media               | Cefuroxime                  | Clinical response      | MIC                                          | 94 (44/47)                                                                                  | 78 (29/37)       | .05   |
| Pneumococcal otitis media <sup>c</sup>  | Cefaclor or cefuroxime      | Bacteriologic response | MIC                                          | 95 (55/58)                                                                                  | 45 (9/20)        | <.001 |
| Pneumococcal otitis media <sup>c</sup>  | Cefaclor or azithromycin    | Bacteriologic response | MIC                                          | 89 (23/26)                                                                                  | 24 (6/25)        | <.001 |
| <i>Bacteroides</i> bacteremia           | Various                     | Bacteriologic response | MIC                                          | 88 (60/68)                                                                                  | 57 (4/7)         | .06   |
| Moderate-to-severe bacterial infections | Ciprofloxacin               | Bacteriologic response | AUC/MIC ratio                                | 82 (37/45)                                                                                  | 26 (5/19)        | <.001 |
| Bacterial infections                    | Aminoglycosides             | Clinical response      | Peak/MIC ratio                               | ~90 <sup>d</sup>                                                                            | ~55 <sup>d</sup> |       |
| Bacterial infections <sup>e</sup>       | Cefotaxime                  | Bacteriologic response | Zone diameter                                | 92 (1464/1591)                                                                              | 63 (31/49)       | <.001 |
| Bacterial infections <sup>e</sup>       | Ciprofloxacin               | Bacteriologic response | Zone diameter                                | 91 (1652/1815)                                                                              | 62 (8/13)        | .004  |
| —                                       | —                           | —                      | —                                            | 89 (4521/5081)                                                                              | 59 (215/366)     | <.001 |

Successful outcome

Susceptible: 4521/5081 (89%)  
Resistant: 215/536n(59%)

**For susceptible organism, is clinical response better  
for those with lower MICs?**

# OUTCOME AND MICs IN PATIENTS WITH INFECTION TREATED WITH CEFOTAXIME (1983!)

| CEFOTAXIME<br>MIC (mg/L) | CAT | Number of<br>Patients | % Cured or<br>improved | % Erradication |
|--------------------------|-----|-----------------------|------------------------|----------------|
| <=4                      | S   | 1003                  | 94                     | 91             |
| 8                        | S   | 273                   | 90                     | 86             |
| 16                       | I   | 151                   | 77                     | 75             |
| 32                       | I   | 70                    | 84                     | 71             |
| >=64                     | R   | 19                    | 64                     | 50             |

EUCAST BP CEFOTAXIME-ENTEROBACTERIA (2017): ≤1 (S) ; >2 (R)

# OUTCOMES OF PATIENTS WITH BACTEREMIA BY *K. pneumoniae* PRODUCING KPC-2/KPC-3 TREATED WITH MEROPENEM COMBINATIONS

| MEROPENEM<br>MIC (mg/L)* | Survivors %       |
|--------------------------|-------------------|
| 1                        | 100(1/1)          |
| 2                        | 100 (4/4)         |
| 4                        | 80 (8/10)         |
| 8                        | 75 (3/4)          |
| $\geq 16$                | 64.7 (11/17)      |
| <b>TOTAL</b>             | <b>75 (27/36)</b> |

\*MIC determined with Vitek2

## EUCAST 2017

- The carbapenem BP for Enterobacteriaceae will detect all clinically important resistance mechanisms (including most of carbapenemases).
- Carbapenemase-producing isolates should be reported as tested.
- Carbapenemase detection and characterisation recommended for public health and infection control purposes.

## CLSI 2017

- MIC breakpoints in M100-S20 (January 2010): Perform the MHT, the Carba NP test, mCIM, and/or a molecular assay when [...] imipenem or meropenem MICs of 2–4 µg/mL or ertapenem MIC of 2 µg/mL
- After implementation of the current breakpoints, these additional tests do not need to be performed other than for epidemiological or infection control purposes.

# DETECCIÓN DE RESISTENCIA MECHANISMS. CARBAPENEMASES (2017).

Disk diffusion

Commercial Panels?

Meropenem <28 mm with disk diffusion (or MIC >0.125 mg/L) in all Enterobacteriaceae

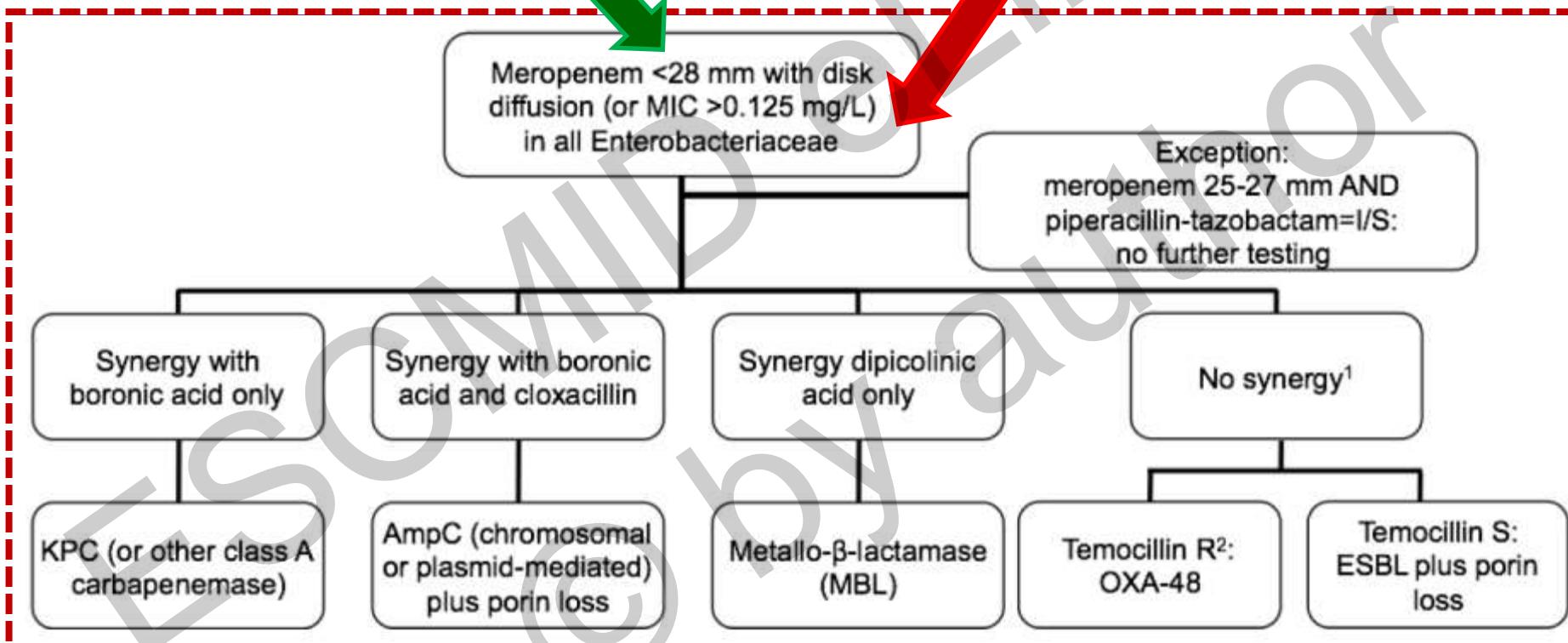
Exception:  
meropenem 25-27 mm AND piperacillin-tazobactam=I/S:  
no further testing

Synergy with boronic acid only

Synergy with boronic acid and cloxacillin

Synergy dipicolinic acid only

No synergy<sup>1</sup>


KPC (or other class A carbapenemase)

AmpC (chromosomal or plasmid-mediated) plus porin loss

Metallo- $\beta$ -lactamase (MBL)

Temocillin R<sup>2</sup>: OXA-48

Temocillin S: ESBL plus porin loss

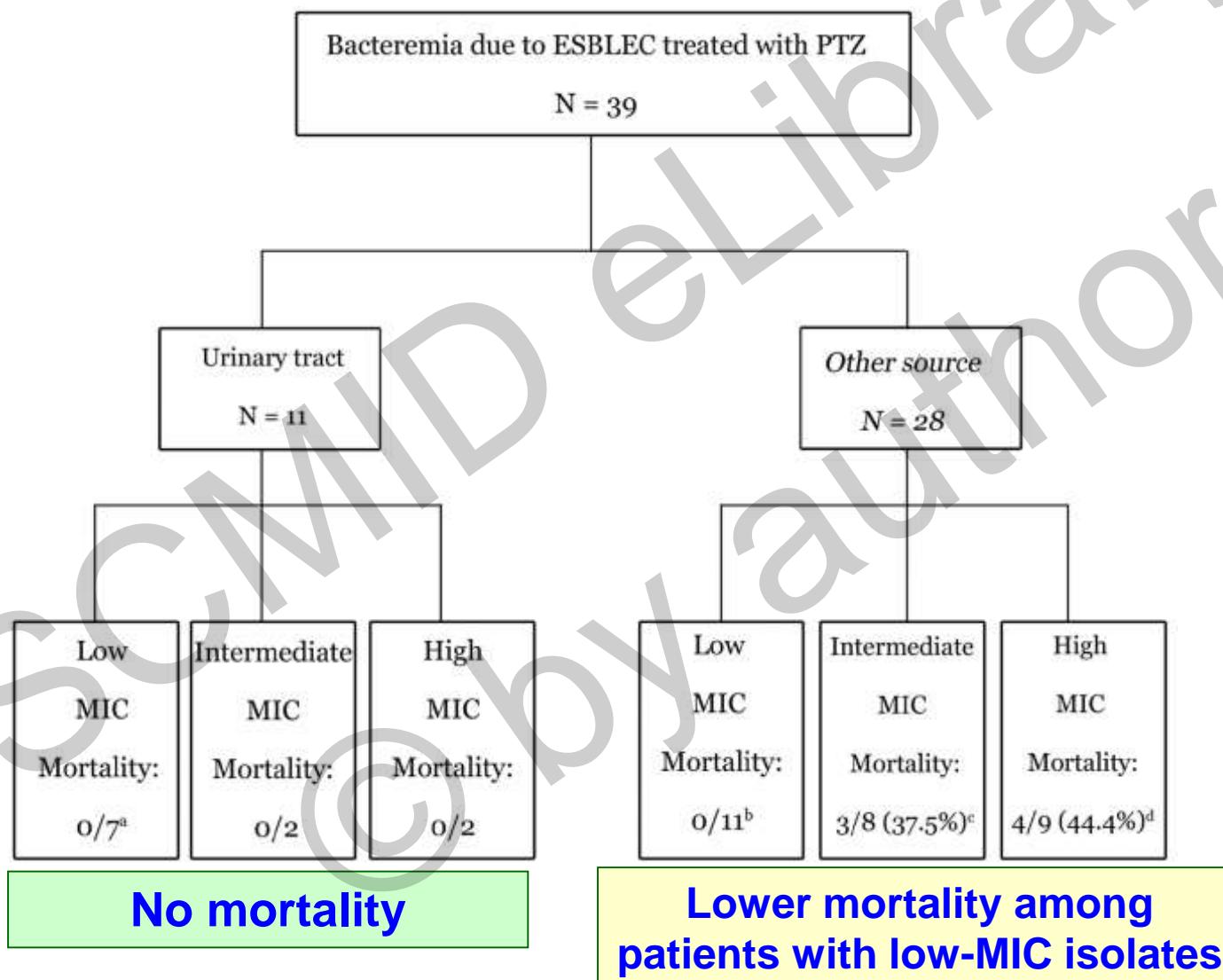


# PATIENTS WITH MRSA BACTEREMIA

| VANCOMYCIN MIC AND MORTALITY | VANCOMYCIN MIC (mg/L)* | OR (95% CI)      | P      |
|------------------------------|------------------------|------------------|--------|
|                              | 1                      |                  |        |
|                              | 1.5                    | 2.86 (0.87-9.35) | 0.08   |
|                              | 2                      | 6.39 (1.68-24.3) | <0.001 |

| VANCOMYCIN MIC AND SHOCK | VANCOMYCIN MIC (mg/L)* | OR (95% CI)      | P     |
|--------------------------|------------------------|------------------|-------|
|                          | 1                      |                  |       |
|                          | 1.5                    | 0.59 (0.33-1.05) | 0.07  |
|                          | 2                      | 0.33 (0.15-0.75) | 0.012 |

\*MIC determined with Etest®


# SYSTEMATIC REVIEW AND META-ANALYSIS

**“No significant differences in risk death were observed in subgroups with high-vancomycin MIC vs low-vancomycin MIC values across different study designs, microbiological susceptibility assays, MIC cutoffs, clinical outcomes, duration of bacteremia, previous vancomycin exposure, and treatment with vancomycin”**

**VANCOMYCIN MICs:  $\geq 1.5\text{mg/L}$  vs.  $<1.5\text{mg/L}$**

**EUCAST VANCOMYCIN BREAKPOINTS FOR *S. aureus*:  $\leq 2$  (S) ;  $>2$  (R)**

# MICs OF PIP-TZB AND OUTCOMES IN PATIENTS WITH BACTEREMIA DUE TO ESBL(+) *E. coli*



# URINARY CONCENTRATIONS OF CIPROFLOXACIN AFTER ORAL ADMINISTRATION

|                       | Urinary Cmax<br>(mg/L) | Urinary throug<br>Conc. (mg/L) |
|-----------------------|------------------------|--------------------------------|
| Ciprofloxacin 500 mg  | 268 (130–967)          | 13 (5.1–37)                    |
| Ciprofloxacin 1000 mg | 892.52 ± 476.4         | 32.80 ± 22.01                  |

|               | Clinical Breakpoints Enterobacteria |         |
|---------------|-------------------------------------|---------|
|               | EUCAST                              | CLSI    |
| Ciprofloxacin | 0.25-0.5                            | 1-[2]-4 |

# PATIENTS WITH BACTEREMIA CAUSED BY ENTEROBACTERIACEAE TREATED WITH PIP-TZB

**EUCAST BREAKPOINTS FOR PIP/TZB:  $\leq 8$  (S), 16 (I),  $> 16$  (R)**

**A borderline (S/I) MIC (8-16 mg/L) of PIP/TZB was NOT associated with a worse outcome than a lower (S) MIC ( $< 1-1-2-4$  mg/L)**



**IF the organism is SUSCEPTIBLE, the actual MIC of PIP/TZ has no significant impact on clinical outcome**

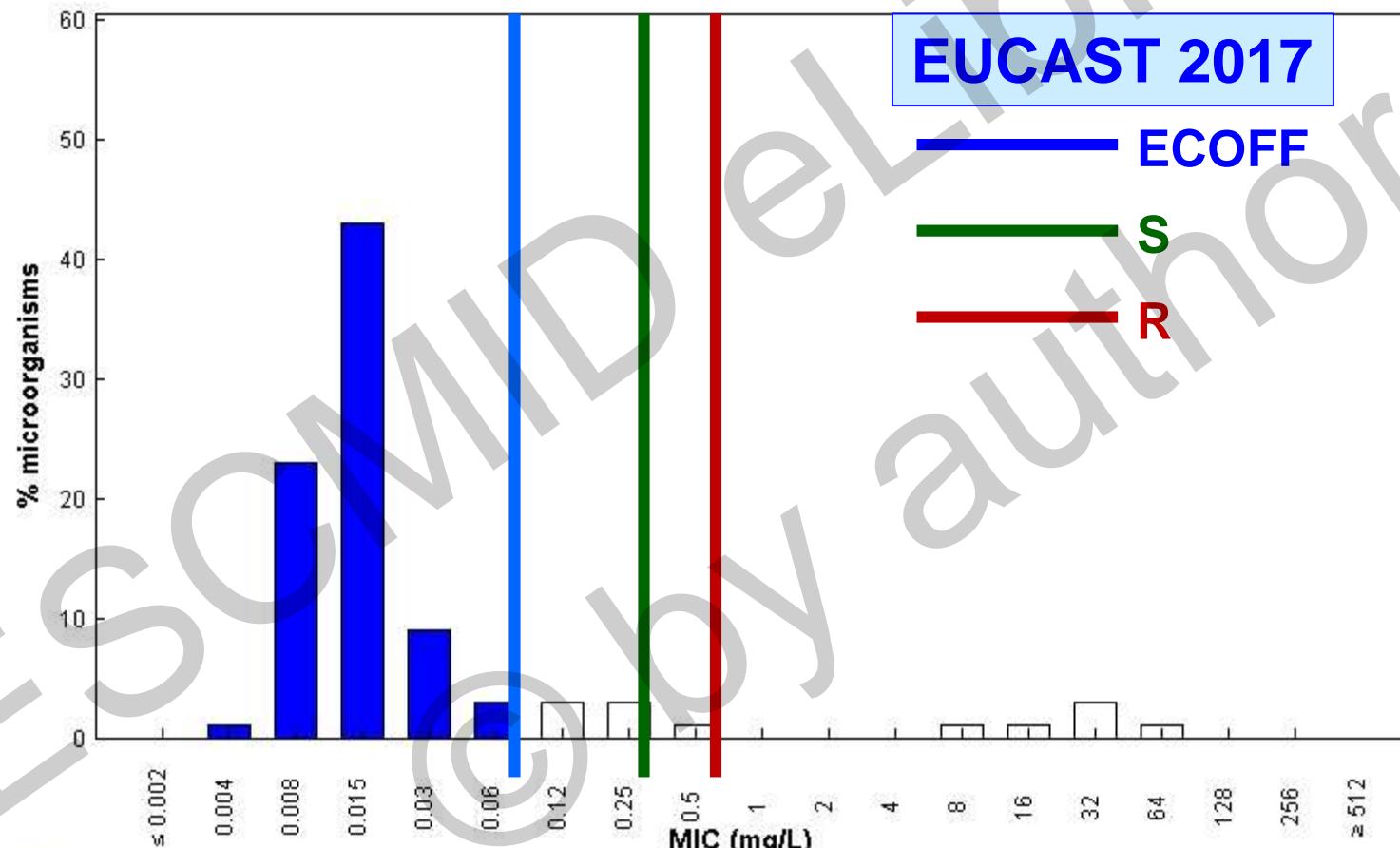
# **MICs vs CLINICAL CATEGORIES WITHIN THE CLINICAL MICROBIOLOGY LAB**

## **Detection of resistance mechanisms**

**Low vs. high level resistance**

**Emerging mechanisms**

**Screening cut-off MIC values**


## **Interpretative reading of antibiograms**

## **Microorganisms identification (intrinsic resistance)**

# MICs FOR DEFINING BREAKPOINTS

Ciprofloxacin / Escherichia coli  
International MIC Distribution - Reference Database 2017-04-21

MIC distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance



MIC

Epidemiological cut-off (ECOFF): 0.064 mg/L

Wildtype (WT) organisms: ≤ 0.064 mg/L

16702 observations (55 data sources)

# SETTING BREAKPOINTS FOR NEW ANTIMICROBIAL AGENTS

## IMPORTANCE OF MICs

### EMA-Central registration procedure

The company will provide:

- Proposed indications for the agent
- Proposed dosing regimens for the agent (by indication) and the available formulations
- Proposed target organisms
- **MIC distributions for relevant species**
- Pharmacokinetic data
- **Pharmacodynamic data**
- **Modelling data, such as Monte Carlo simulations**
- Clinical trial data, including **outcome related to MIC** where available

## **(PERSONAL) CONCLUSIONS**

**CLINICAL CATEGORIES SHOULD BE ALWAYS REPORTED**

**IF MIC HAS BEEN OBTAINED, IT WOULD BE PREFERABLE  
ALSO REPORTING IT, NOT ONLY FOR BEING USEFUL TO  
(MANY) CLINICIANS, BUT ALSO BECAUSE OF ADEQUATE  
INFORMATION IN CLINICAL CHARTS**

**CONTINUING EDUCATIONAL ACTIVITIES EXPLAINING  
THE ACTUAL MEANING, ADVANTAGES AND  
SHORTCOMINGS OF ANTBIOGRAM METHODS, MICs AND  
CLINICAL CATEGORIES SHOULD BE CONSIDERED**